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ABSTRACT 

A set of freeze thresholds is defined which replaces the loosely defined element “killing frost.” Freeze series are 
tested  and found to  be random. This makes it possible to fit frequency  distributions. It is hypothesized that these 
distributions  are normal and a test of significance verifies this. A hypothesis that  the variance parameter is constant 
over  Iowa is tested  and found to be true. It is shown that spring and fall freeze are  independent  and  this results in 
a simple form of freeze-free period distribution. The calculation of probabilities of freeze and freeze-free season are 
explained. 

1. INTRODUCTION 

There  seems to  have been little statistical treatment of 
frost or freeze data prior to  the excellent  works of Reed 
and Tolley [7,8] in 1916. Previous writers on this  subject 
for the most part were content  to give means with little 
explanation of their significance.  Few  seemed to recog- 
nize the role of the  random variable in computing  means 
or in climatology in general, and randomness was usually 
looked on only as giving rise to errors in physical measure- 
ments which  were to be avoided if possible. 

About the time of the publication of the Reed  and Tolley 
papers, the technique of linear correlation was  being intro- 
duced rapidly  in applied climatology. Here was a 
“magic” tool  which depicted relationships and seemingly 
avoided the randomness that was so difficult to  treat. 
Correlation immediately absorbed the energies of many 
able climatologists in  attempts  to solve problems for 
wbich the use of the technique was largely inappropriate. 
Many did not recognize the  random  character of the 
sample correlation coefficient and  frequently  interpreted 
correlations erroneously. Probably  more in climatology 
than in other fields, the correlation technique tended to 
displace more objective statistical  methods  and to delay 
progress. 

In contrast  Reed  and Tolley’s papers show a  remarkable 
understanding of the  statistical method and  its applicat,ion 
in climatology. Indeed,  one is amazed at their surpris- 
ingly modern slant  in  tbis discussion of over 40 years a,go. 
Yet these papers seem to  have drawn little  attention, for 
work carried out 20 and more years later  had  not  yet 
taken advantage of Reed  and Tolley’s contributions. 
Even much of the work  being done  today is not up to  the 
high standard  set  by these able climatologists. 

2. KILLING FROST VERSUS FREEZE 

While the occurrence of the  temperature at a point in 
time and space can  be  measured and expressed as a 
definite value with particular interest, there are also 
critical values below  which  effects of interest are the 
same. Thus, if we are  interested in the freezing of water 
as  a simple physical event, we might say that water 
freezes at  32O I?. or any  temperature lower than 32’, 
therefore 32’ is a critical value for water. The interpre- 
tation of frost or freeze in meteorology is similar in that 
an effect produced by  a critical value is also  produced by 
any  temperatare lower than  the critical value. Hence 
we define a freeze as  the occurrence of a minimum tem- 
perature of specified value or lower, which can produce 
some special freezing  effect. A 32’ freeze is therefore 
the occurrence of a minimum  temperature of  32’ or 
lower and  more generally a t-degree  freeze, is the occ.ur- 
rence of minimum  temperature of to or lower. 

It is to be  noted that our definition of freeze is a numer- 
ical one; i. e., it is defined in  terms of a  thermometer 
measurement. This is in  contrast  to “killing frost” 
which is defined non-numerically as  the frost or freezing 
condition which  kills the  staple vegetation in  the vicinity 
of the observing station. As has been pointed out many 
times previously this element has  many obvious faults 
not  the  least of which are  its looseness of definition and 
the difficulties of observation. Early criticisms of “killing 
frost”  and “growing season” were made  by  Ward [12] 
and Landsberg [6]. In 1948 the  Weather  Bureau discon- 
tinued  the use of “killing frost’’ as  a climatic element and 
substituted  the freeze thresholds 32’,  28’, 24’, 20°, and 
16’ F. These were arrived at  in consultation with 
agronomists and  horticulturists. 
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Figures 1 and 2 show killing frost  dates  plotted  against 
32' F. threshold dates  for Alta, a cooperative station, 
and  Des Moines, a first order station.  Note  that for 
Alta the first killing frost  date in fall comes later  than 
the first 32' date whereas at  Des  Moines the 32' date 
comes later. An examination of several other examples 
showed similar inconsistencies, thus giving evidence of 
the shortcomings of the killing frost observation. 

3. THE FREEZE SERIES 

By a freeze  series we mean  t'he sequence of dates cf 
annual occurrence of last  spring  or first fall freeze ob- 
served with stable  instrument exposure. To apply 
statistical  methods [lo] to such a series it is necessary that 
an element of randomness be present.  Although it never 
happens that this element is completely absent  in  a 
sequence of observations whatever their character, homo- 
geneous  freeze  series are unconditionally random; i. e., 
there is no significant condition which can  be imposed 
other  than  that of belonging to the class of freeze dates. 

Reed and Tolley [S] evidently noted this randomness in 
"killing frost'' series, for they compiled frequency distri- 
butions and  treated  frost  dates  as if they formed a  random 
series.  Although Reed and Tolley did not  test  the  ran- 
domness of their frost series, the self-ordering of clima- 
tological data in time and the various extraneous effects 
which  could introduce breaks and  trends in climatological 
series  make it good practice to  apply some test for ran- 
domness. Many tests  both  parametric  and non-para- 
metric are available for such series, but since little is known 
of the power of such tests, the choice is based  mostly  on 
convenience of application. There is  however,  in this 
case the choice  between a  parametric  and  a non-para- 
metric test, since as will be shown lat'er, the freeze series 
treated here are  normally  distributed. In this  instance 

then we have applied the autocorrelation test, the 
necessary distribution for which  was derived by Anderson 
[l] for  a  normally  distributed series. Grouping tests based 
on  the tables of Swed and  Eisenhart [9] have also been 
applied because of ease of application. I n  making the 
autocorrelation test  it was assumed that  the  correlogam 
decreases from  maximum values at  short lags and hence 
only coefficients for lags one and  three were computed. 

The  nature of the freeze  series  would naturally make the 
suspicion of non-randomness less than  in  other clima- 
tological series; in  fact, all series tested were random on 
both tests. It seems, therefore, unnecessary to present 
results in detail although those for one station, Pocahontas, 
may be of interest.  These  are given in table 1. 

The acceptance regions for LRN where L is lag for num- 
ber of observations N=42  and 43 may be taken directly 
from Anderson's table 6 for lag 1. For lag 3 the same table 
may be  used since N/L=4  and N=4L, a criterion given 
by Anderson [l] for the  suitability of the lag 1 table. 
Since the 95 percent acceptance region for N=42, 43  is 
approximately (-.327<1R42<.278), it is seen that the 
coefficients of table 1 lie  on this  interval so we accept the 
hypothesis of randomness for both  spring  and fall series. 

For  the grouping test we again employ  a two-tailed 
test since our  alternatives  to  randomness  are linear trend 

TABLE 1.--58O freeze autocorrelation  coeflcients, LRN, for Pocahontas, 
Iowa 

Spring Fall -" 
Lag 1" _ _ _  

43 42 N . - - - - - - - - 
-0.006 0.224 

Lag3 .____ "0.229 "0.032 
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TABLE 2.-Spring, $2' freeze.  Underlined  values  are those which 
jall  outside the 95 percent  acceptance  region and location shift as well as oscillatory movement, the 

former  giving  rise to too many  runs  and  the  latter  to 
either too many or too few.  Swed and Eisenhart's [9] 
tables  give the 95 percent acceptance region  as  (15,  28) 
approximat,ely, for runs above and below the median 
with N=42, 43. The  total numbers of such runs, u, for 
spring and fall as shown in  table 1 are well within this 
region,  a.nd  we  conclude again that  the series are  random. 

- - 
n' - 

48 
53 
55 
73 
60 
49 
68 
73 
46 
54 
54 
51 
44 
42 
- 

Station n I- 4b-I a 
" 

.I197 

.6182 
,3681 

,8327 
.8163 

-. 0891 .9775 
,3678 .8391 -. 0614  .7926 
.2400 

.7983 -. 0155 

.7791 .2499 

.7633 .3177 

.8282 

.I936 . x 9  

.3293  .7838 

.4032 . a 2 1  
-.2843 .7941 

- 

- 
12.6 
9.8 

" 

4/28 

218.0 5/16 
95.1 4/12 

138. 5 5/2 
95.3 5/1 

158.8 

4/20 134.4 
5/5 132.8 

4/19 86.1 

$2 132.6 
121.0 

5/4 138.6 
5/6 130.3 

30 
30 
29 
30 
29 
30 
30 
30 
30 
30 
30 

Albia" _____. - - - _ _ _  _. 

Ames.---..---------- 
Coming ____________._ 
Davenport __________. 
Decorah _ _ _ _ _ _ _ _ _ _ _ _ _  
Denison .__.____ _____. 
Des  Moines ._________ 
Duhuque _ _ _ _ _ _ _ _ _ _ _ _  
Fairfield. .___________ 
Iowa  City _ _ _ _ _ _ _ _ _ _ _  
Iowa  Falls _ _ _ _ _ _ _ _ _ _ _  

11.8 
9.8 

14.8 
11.5 
11.6 
9.3 

11.0 
11. 5 
11.8 4. THE FREEZE DISTRIBUTION  FUNCTION 11.4 
12. 1 
12.4 

Northwood _ _ _ _ _ _ _ _ _ _  
30 Pocahontas _ _ _ _ _ _ _ _ _ _  21 Olin _"""""""" 30 

Reed and Tolley [8] concluded that  their "killing frost" 
series  were normally distributed  and  fitted  these series 
with this distribution; however, the means by which they 
reached this conclusion was not  very powerful. The 
&est of goodness of fit was available at  that time, but 
they did not  report having employed it.  This was perhaps 
just  as  well as this  test is non-parametric  and is not partic- 
ularly sensitive in  detecting divergence from  normality. 
Geary and Pearson [5 ]  have  presented tests which are more 
sensitive in testing  for non-normality. In  fact Geary [4] 
states that these seem to be efficient tests for skewness and 
kurtosis for a wide range of alternatives  to normality. 
Geary and Pearson's tests employ the  statistics 

a= 2 1 X " z I  

nI: (X-$2 

for kurtosis, and 

I l 

o=. 1257 

TABLE 3.-Spring, 24' freeze.  Underlined  values  are those which 
fall  outside the 96 percent  acceptance  region 

139.6 
151.8 
146.7 
174.5 
141.4 
103.6 
183.9 

11.8 
12.3 
12. 1 
13.2 
11.9 
10.2 
13.6 I 

48 
60 
54 
53 
53 

-. 1756 .7962 -. 0372 .7964 

-. 0797 .8243 
,2048 .8083 

--.w75 .a438 
.0541 E 

-. 3543 

.8218 .0903 

.8126 -. 5383 

.7825 -. 1393 

.7594 --.3154 

.8132 .5351 

.8219 

.w .22m 
.8316 .1351 

_. 

49 
53 Des  Moines _.________ I 30 I 3/26 

160.7 
183.9 
166.0 
155.9 
115.6 
99.0 

~ 117.1 

12.7 
13.6 
12.9 
12.5 
10.8 
9.9 

10.8 

47 
45 
51 
51 
51 
33 
42, 

Duhuque _ _ _ _ _ _ _ _ _ _ _ _  

4/9 30 Pocahontas _ _ _ _ _ _ _ _ _ _  4/9 21 Olin _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  4/10 29 Northwood _ _ _ _ _ _ _ _ _ _  4/10 30 Iowa  Falls _ _ _ _ _ _ _ _ _ _ _  4/2 30 Iowa  City _ _ _ _ _ _ _ _ _ _ _  4/2 30 Fairfield _ _ _ _ _ _ _ _ _ _ _ _ _  3/27 30 

I 

i7=.0948 

TABLE 4.-Spring, 16' freeze.  Underlined  values  are those which 
fall  outside the 96 percent  acceptance  region 

for skewness, where m2 and my are  the second and third 
moments respectively. These were computed for a 
random sample of stations for 32',  24', and 16'  freeze in 
spring and fall and  are  tabulated  in  tables 2 to 7 for the 
stations studied. The underlined values of and a are 
those  which fall outside of the 95 percent aceeptance 
region. The relative infrequency of these when the 
reliability of the original data is  considered leads us to  the 
conclusion that  the normal  distribution is quite  adequate 
for depicting freeze probability. 

Since the  sample  mean  and  variance are jointly sufficient 
for estimating the  parameters of the  normal  distribution, 
i. e., they  extract all information from the sample avail- 
able for fitting the normal  distribution, it is only necessary 
to estimate  these to  obtain  the freeze distribution func- 
tion, or as we have called it,  the "freeze hazard function." 
Values  of the mean, Z, and  variance, s2, estimated  from 
the various freeze  series are also  shown  in tables 2 to 7. 

Either one of two procedures may now  be  followed to 
obtain estimated probabilities for individual stations: 
(a) Employ Z and s with  any  normal  probability  integral 
table,  or ( b )  use normal  probability  coordinate  paper for 
plotting the mean at  50 percent  and 5 f28  a t  2.275 percent 
and 97.725 percent respectively. Method (a)  may also 
be conveniently applied using the  abbreviated  normal 
probability table given in table 8. The results of follow- 

a n' 
" 

.8120 

54 .7892 
53 .7974 
54 . m 7  
51 .8419 
4s 

,8403 49 
.7894 53 
.8312 47 

.8371 
,8194 46 

52 
.8608 49 
.I3448 51 
.8591 33 
.8247 42 

- 

Station n 

Albia _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

30 Decorah _ _ _ _ _ _ _ _ _ _ _ _ _  30 Davenport _ _ _ _ _ _ _ _ _ _ _  30 Corning.-. _ _ _ _ _ _ _ _ _ _ _  30 Ames _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  30 

Denison _ _ _ _ _ _ _ _ _ _ _ _ _  30 
Des  Moines _ _ _ _ _ _ _ _ _ _  30 
Dubuque _ _ _ _ _ _ _ _ _ _ _ _  30 

Iowa  City _ _ _ _ _ _ _ _ _ _ _  30 
Fairfield _ _ _ _ _ _ _ _ _ _ _ _ _  30 

Iowa  Falls _ _ _ _ _ _ _ _ _ _ _  30 

-1-1- 
-. 0311 

.0768 

-. 4094 
.3025 

,5328 

-. 1709 
,1693 

-. 4098 
,1543 

-. 0536 
.0367 

-. 1402 
.4641 -. 2464 

- 

Northwood _ _ _ _ _ _ _ _ _ _  
29 Pocahontas _ _ _ _ _ _ _ _ _ _  21 Olin" """""_"" 30 

g=. 0918 

ing procedure (a) are shown in figure 3. A similar pro- 
cedure may be applied to  the 20' and 28' thresholds. 

It is noted that  the original data  are  not plotted.  This 
is justified by  the  fact  that  plotting would  involve first 
estimating probabilities, a procedure which is known to 
be  much  less  efficient than  the method of fitting described 
above; bence, the  points would add nothing to  the  graphs 
and  might  actually detract from  them if they tendcd to 
change the position of the lines. It may  be  further 
noted that spring freeze hazard is read from the upper 
scale and fall freeze hazard from the lower  scale. These 
give .the "best" estimatea in .the statistical sense of the 
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TABLE 5.-Fall, 36" freeze.  Underlined  values  are  those  which  fall 
outside the 95 percent  acceptance  region probability of freeze occurring after  a  particular  date in 

spring  and before a particular  date  in fall. 
1 In  the above analysis n years were  used to  estimate 
the  mean, variance, and  standard deviation whereas the 
full length of record n' was  used in estimating &, and a. 
The n-year statistics came  from State tabulations of 
freeze statistics issued to  Weather  Bureau Offices. These 
were  designed according to  the general principles set 
forth here and  treated insofar as possible as a homogeneous 
30-year record at  cooperative stations. 

5. CLIMATIC VARIATION OF THE  PARAMETERS 

We have seen that  the two  parameters of the freeze 
hazard  distribution  are  the  mean  and  standard deviation. 
It is quite clear from physical principles that  the mean 
freeze date  must  vary  with  latitude  and  other factors. 
This makes it possible to  draw isoline maps of mean 
frost (or freeze) and  there are, of course, familiar examples 
of such  maps in the  literature. 

While geographical variation of mean freeze date can 
be explained physically, there is no cogent physical basis 
for hypothesizing the geographical variation of the freeze 
date  standard deviation. If, however, we think of the 
standard  deviation  as a scaling parameter,  then  the 
standard deviation of temperature is a climatological 
scale of temperature,  and  the  standard deviation is a scale 
of freeze date. Now it is known that  the climatological 
scale of temperature varies slowly with geographical 
factors,  and since the freeze threshold  date is a kind of 
inverse time function of temperature for a fixed tempera- 
ture  range, we might  suspect that  the scale of freeze 
threshold also changes slowly in a similar fashion. This, 
as we shall see, seems to  be  the  situation. 

Reed and Tolley [8] prepared isoline maps of frost 
threshold standard  deviation  which give the impression of 
being drawn to  small islands of homogeneity rather t,han 
to some underlying geographical functions. Although 
they do not  remark  on  the difficulties in  drawing these 
isolines, they  must  have wondered  some  about  drawing 
the  same isoline value for northern  North  Dakota as for 
northern  Florida.  One hypothesis that could be  made is 
that  the islands are  due  to correlations in  the random 
residuals. Such correlations decrease with increasing 
distance  between  stations  and  this, together with small 
climatic heterogeneities, could lead to such islands. 

Although the Reed and Tolley maps give no reason to 
quest.ion the  constancy of the freeze scale parameter over 
quite large areas, we did  examine one  possible causal 
factor;  this was station elevation. The variances of 57 
Iowa  stations were correlated with  station elevation. 
For  spring this  gave a correlation coefficient of only 0.1054 
and for fall of only -0.0173. Neither of these is significant 
at  the 5 percent level, leading us to  the conclusion that  the 
variance is probably  not  related  to  the  station elevation. 

The next logical step  in  our analysis of scale variation 
seems to  be  to hypothesize that  the scale is essentially 
homogeneous over quite large areas or specifically  over the 

Station - 
Blbia _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
Ames _ _ _ _ _ _ _ _ _  _ _ _ _  _ _  - 
Coming _...__________ 
Davenport _ _ _ _ _ _ _ _ _ _ _  
Decorah _ _ _ _ _ _ _ _ _ _ _ _ _  
Des Moines ._________ 
Denison. ._________ _ _  
Dubuque _ _ _ _ _ _ _ _ _ _  _ _  
Fairfield _ _ _ _ _ _ _ _ _ _ _ _ _  
Iowa City. ._________ 
Iowa Falls _ _ _ _ _ _ _ _ _ _ _  
Northwood _ _ _ _ _ _ _ _ _  - 
olin- - - "_ """"" - 
Pocahontas- _ _ _ _ _ _ _ _ _  

n P  
" 

30 

10/5 30 
lO/Z 30 

lO/ll 30 
10/10 30 
10/19 30 
10/19 30 
1014 30 
9/25 30 

lO/24 30 
10/12 30 
10/9 30 

10/15 

30 1014 
20 10/1 

a)  

149.6 
194.3 
168.3 
133.6 
170.8 
125 8 
146 4 
143.0 
208.5 
191.9 
79.6 
98. 2 
80.1 

119.7 

a 

.8196 

.7863 

.8226 

.8178 

.7873 

.8405 

.BO31 
,8272 
,8470 
,7960 
,7887 
.8588 
.E215 
,8320 

- 

48 
54 
54 
73 
52 

68 
51 

45 
73 

53 
54 

42 
50 

43 
- 

12.2 
E 13.9 
. a 3 2  13.0 

.0971 

11.6 -. 0558 
13.1 .2447 
11.2 .3972 
12.1 

.1427 13.9 

.1579 14.4 
-. 0037 12.0 

.1611 

8.9 .3891 
9.9 . B O 1  

10.9 I .3429 

8.9 .2226 

g=.1MI1 

TABLE 6.-Fall, 24" freeze 

8 - 
14.2 
11.3 
14.6 
11.3 
14.5 
12.3 
11.0 
11.5 
12.9 
12.7 
11.8 
12.6 
12.7 
12.3 

& a  
" 

-. 2286 -. 2479 
.7610 

.E220 .1176 

.7882 -_ 1191 

,8119 

-.2338 ,8459 -. 4701 ,8326 
-.0949 .7805 
-. 2058 .7791 

.0482  .7985 
,0086 .7665 -. 1227 .8439 

- .a75  .8240 

-. 1375 .SO54 
.2330 .7962 

n' 

49 
50 
51 
52 
51 
50 
52 
52 
42 
52 
52 
46 
37 
43 

8= 

201.1 
127.9 
212.8 
126.7 
211.4 
151.2 
121.9 
132.9 

160.1 
166.7 

139.6 
158.2 
160.1 
151.3 

__ 

10/27 
10/28 
11/13 
10/17 
lo/% 
11/7 

11/1 

11/11 
10/28 

lo/% 

10/23 

10/30 

10/27 
10/27 

-. 

30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
29 
20 
30 

Albia. _ _ _ _  _ _  _ _  _ _ _ _ _  ~ I 
Ames _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _  
Davenport _ _ _ _ _ _ _ _ _ _ _  Coming _ _ _ _ _ _ _ _ _ _ _ _ _ _  I 
Decorah. _ _ _ _ _  _ _ _ _ _ _  - 
Denison. . - - _ _ _ _ _ _ _ _  - 
Des Moines ._________ 
Dubuaue _ _ _ _ _ _ _ _ _ _ _ _  
Fairfieid- _ _ _ _ _ _ _ _ _ _  _ _  
Iowa City .__________ 
Iowa Falls _ _ _ _ _ _ _ _ _ _ _  
Northwood _ _ _ _ _ _ _ _ _ _  
Oun" "" _"" """ 

Pocahontas _ _ _ _ _ _ _ _ _ _  I 
g=.1032 

TABLE 7.-Fall,  16'freeze 
- __ 

8 - 
14.0 
10.5 
11. 1 
14.0 
12. 5 
12.4 
13.9 
13.3 
13.5 
11.2 
10.8 
1L6 
13.3 
9.7 
- 

station I n 

-. 2245 
.3515 

-. 4692 
.5853 -. 3924 -. 1285 
.5127 
.3899 

-. 2005 
,1082 

-. 3577 
.lo79 

-. 1927 
.1258 

.7517 49 

.8049 

.7960 
50 

.7900 
51 

.7798 
51 

.7745 
52 

.7735 52 
51 

.7826 

.7882 
52 

.7979 
44 

.7948 
52 

. m 5  
52 
47 

.8251 

.7811 
34 
43 

11/23 196.5 
11/15 110.9 
11/13 122 7 
11/27 197.3 
11/9 155.5 
11/7 154.3 

11/25 192.4 
11/25 176.3 
11/22 182.2 
11/20 125.1 
11/12 117.3 
11/11 135.4 
11/14 178.1 
ll/S 93.8 

Albia _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
Ames _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  30 

30 Pocahontas _ _ _ _ _ _ _ _ _ _  20 olin _"""""""" 29 Northwood _ _ _ _ _ _ _ _ _ _  30  Iowa Falls _ _ _ _ _ _ _ _ _ _ _  30  Iowa City. _ _ _ _ _ _ _ _ _ _  30  Fairfield _ _ _ _ _ _ _ _ _ _ _ _ _  30 Dubuque __________._ 
30 Des Moines ________._ 
30  Denison .____________ 
30  Decorah _ _ _ _ _ _ _ _ _ _ _ _ _  30  Davenport.. _ _ _ _ _ _ _ _ _  30 Coming .__._______.._ 
30 

g=.1007 

TABLE 8."Abbreviated  table of normal  probability  distribution 

For probability less than ( Z U 8 )  read  down 

P[Z<(?"t8)] I f I PfZ<(f+t8)1 

. 01 

.02 

.05 

.10 

.15 

.25 

.30 

.m 

2. 33 
2.05 
1.64 

1.04 
1.28 

.84 

.67 

.52 

.25 

.39 

13 d 

.98 

.95 .!XI 

.80 .85 

.70 

.76 

.65 .36 . .~ .40 
.45 
.50 

.60 

.bo 

.65 
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State of Iowa. To test,  such  a hypothesis it is convenient 
to deal with the variance rather  than  the  standard devia- 
tion. This is no  more complicated than  to consider that 
the variance is our population parameter  rather  than  the 
standard deviation. Although there  have been many 
tests derived for testing  the homogeneity of variances, 
there is no test for homogeneity when there is a given 
correlation between the populations. We shall, therefore, 
use a simple test due  to  Cochran [2] with consideration 
given to  the effect of dependence. 

Cochran  has given the  distribution of g which is the 
ratio of the  largest variance of k sample variances to 
the sum of the k sample variances when the k populations 
are independent. Extended  tables for the 5 percent and 
1 percent significance limits  are given in reference [3]. 
To  adjust  the  test for dependence we proceed as follows: 
Since we have only the  hypothesis on the  invariance of 
the scale, we  wish to accept this hypothe,sis although, of 
course, we will not  let  this wish  influence our decision. 
We note that Cochran's tables provide for k populations 
(stations) and  sample size n (length of record in  years). 
With  Olin omitted  from consideration it is seen in tables 
2-7 that n is about 30 and k would be 13 if the  stations 
were independent of each other. However, the  stations 
are  not independent and hence, k has some effective value 
less than 13. Now, if we examine the 5 percent  limits of 
Cochran's table [3] we see that  the g values increase with 
decreasing k. Consequently, if a g based on k dependent 
stations is not significant according to  the significance 
limit based on k independent  stations, it is all t,he more 
not significant on  some smaller k resulting  from  the 
existing  dependence. 

The values of g for each threshold  and season are 
entered at the  bottoms of tables 2-7. Using Cochran's 
tables and  the above reasoning with respect to depend- 
ence  one can see roughly that none of these g's is  signifi- 
cant at  the 5 percent level.  Again on the assumption of 
independence a more  exact  probability of exceeding 
g=0.12567 for spring 32' feeeze  was computed using a 
normal approximation for the  beta  distribution.  This 
gave  a value of 0.15 wbich is at least  this large for the 
true  situation of dependence  among the  stations. Hence, 
the probability of exceeding g=0.12567 is greater  than 
0.15 and  the  probability of exceeding the g's for other 
thresholds is still  greater. The threshold series are 

TABLE 9.-Variances  and  standard  deviations 

Threshold 

32' 
28" I 240 I 200 I 16' 

Elprim 

a )  . . . . . . . . . . . . . . . . . . . . . . .  133.7 142.0 155.4 171.9 154.1 
a-.---.--."..-.-.-.----- 11.6 1 11.9 1 12.5 I 13.1 I 12.4 

Fall 

a $  . . . . . . . . . . . . . . . . . . . . . . .  ~""""..""....""" 141.2 163.1 
- . .  . .  

highly correlated (see [lo]); therefore, the g's add little 
information to each other  about heterogeneity of the 
variance in general. As a consequence the individual 
tests of the g's must be accepted as a verification of the 
physical hypothesis that  the variances are homogeneous, 

If the variances do not differ significantly over  the 
State of Iowa,  then  the  standard deviations cannot 
differ significantly, and it is a considerable simplification 
to assume one value of the  standard deviation for the 
whole State.  This  has  already been done in [ll].  On 
the assumption of homogeneity of the variance over a 
large  area  such  as  a  State, a much  improved estimate of 
the variance may be  obtained  by  taking  the weighted 
average of the  station variances. The  square root of 
this provides a good estimate of the  standard deviation. 
Using the  standard  tabulations of freeze data referred 
to above, table 9 was prepared. These average standard 
deviations may be used with  any individual station 
mean  to  obtain  the freeze hazard  distribution for that 
stabion. 

6. THE DISTRIBUTION OF .FREEZE-FREE PERIOD 

Since we have shown  above that  the freeze hazard 
distribution is normal, it follows from a well-known 
theorem in statistics  that  the difference between fall and 
spring threshold dates or freeze-free period will  also be 
distributed in a normal  distribution.  This distribution 
will have a mean equal to  the difference between the fall 
and  spring  mean  dates. Its variance, however, will 
depend on the correlation coefficient between  spring and 
fall freeze dates.  This  cannot  be  obtained  from the 
statistics given above, and so must be given separate 
consideration. 

The long time  interval  between  spring  and fall freeze 
dates  naturally leads one to  the conclusion that  the cor- 
relation  between  them  must  be small. Reed [7] found 
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the spring-fall correlation coefficient for one station, 
Eeokuk,  Iowa, to  be -.179. Using  a test which is now 
obsolete, he concluded correctly that  this was not sig- 
nificantly different from zero. He  made  no  further 
analysis of this correlat,ion, and even  though  this single 
value  was not significant, he included it in estimating  the 
standard deviation of the growing season distribution. 
The  effect of the correlation is to increase the  standard 
deviation a  little more than one day. 

We have  computed  a  number of spring-fall correlation 
coefficients for Iowa  and  found  none  to  be significant. 
Two typical examples are Fairfield -.lo3  and Northfield 
-.080. Although further  study of this correlation may 
be  of interest, its small effect on the  standard deviation 
of the freeze-free distribution  makes  the fruitfulness of 
such an effort questionable. With close approximation 
it may  be  assumed that  the freeze-free period standard 
deviation is the  square  root of the  sum of the  spring  and 
fall freeze variances and  the mean is, of course, the 
difference between the fall and  spring  means.  This gives 
the same statistics we had for the freeze distributions  and 
hence, the freeze-free period distribution  may  be  plotted 
on probability  paper in the same  manner. From  the 
means of tables 2  and  5  and  the variances of table 9,  we 
find the  spring 32O-fall  32’ freeze-free period mean and 
standard deviation for Fairfield to  be 163.9 and 16.6, 
respectively. The  distribution is shown in figure 4. 

It will be clear that  the same threshold need not be 
used at  both ends of the freeze-free period. The need for 
using different thresholds in spring  and fall could  come 
from either a different sensitivity of a single crop in the 
spring and fall or one crop being subject  to  the  spring 
hazard and  another  to  the fall hazard.  Figure 4 also 
shows the  distribution for the  spring 32O-fall  20’ freeze- 

free period which is an  illustration of an application to 
seed corn growing. Here, the spring hazard is that of 
killing the  tender  plant, whereas the fall hazard is  reduc- 
tion of germination percentage. The spring and fal l  
variances were obtained  from  table  9  and  the mean 
32’-20’ freeze-free period, 195.5, from manuscript 
tabulations. 
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